Chemistry

Interactive flow diagram of the production plant


Fig.1

Flow diagram

That Flow diagram (also: flow diagram) is an aid in the form of a technical drawing within process engineering. It shows the individual process sections in a schematic form. The presentation is regulated according to EN ISO 10628 (national: among others DIN EN ISO 10628, ÖNORM EN ISO 10628). Within this standard, depending on the degree of abstraction, a distinction is made between the basic flow diagram, process flow diagram, pipeline and instrument flow diagram.


Myopia and farsightedness

myopia and Farsightedness are two common forms of Ametropia, which can be understood physically as imaging errors in the "eye camera system".

Through unconscious muscle tension, a healthy eye lens is always curved in such a way that the image on the Retina is always sharp, this is called Accommodation. This means that the focal point of the lens lies exactly in the (curved) plane of the retina. If this is not the case, one speaks of myopiawhen the focus before the retina lies, and from Farsightedness, if he behind lies. These visual defects let through Spectacle lenses or contact lenses, that is, a corrective lens in front of each eye, almost completely correct it. You choose one Diverging lens for nearsightedness and a Converging lens with farsightedness.


Absorption chiller

Absorption chiller, Sorption cooling machine, a refrigeration machine based on the principle of the periodic expulsion of a refrigerant from a carrier liquid (solvent) and subsequent absorption of the now gaseous refrigerant in the carrier. The functional principle is illustrated in Fig. 1: The refrigerant (e.g. ammonia), which is initially dissolved in the carrier liquid (e.g. water) (container A) is at the desired low level Temperature brought to evaporation, whereby the evaporation heat required for this is taken from the environment (air, chilled goods / container B), which cools down as a result. So that the evaporation of the coolant does not come to a standstill, the coolant vapor must be continuously removed (line C). So that the latter can be used again for cooling, it is condensed again in another vessel (D), which happens through the process of absorption of the refrigerant in the carrier liquid. The heat released during absorption is dissipated by means of water cooling (container E). To return the refrigerant to the initial container, the vessel is now heated with the help of an additional heat source (F), which drives the refrigerant out of the door again and is evaporated. A liquefaction in A occurs when the pressure there is greater than the liquefaction pressure at the temperature there.

While, according to the principle described, vessels A and B each fulfill double functions as a condenser / evaporator or cooker / absorber, which makes it necessary to divide the process into a cooling and a heating period, If the functions are separated (Fig. 2), can continuous operation of the refrigeration machine be achieved. The refrigerant is here in the cooker K at a high temperature (TH) and high pressure (pC.) evaporates. The refrigerant vapor flows through the separating column R, where the solvent vapor that is also driven out is separated off, to the water-cooled condenser C (temperature TM.), where it condenses and cools down in the process. The condensed refrigerant now flows to the evaporator V, where it is brought to the desired cooling temperature (TK) corresponding evaporation pressure p0 is relaxed. The refrigerant evaporates in the evaporator V, where it generates the desired refrigeration. The circuit is closed in the water-cooled absorber A, where the refrigerant vapor and the refrigerant-depleted carrier / refrigerant liquid coming from the stove come together. On its way from the cooker to the absorber, the solution is controlled by the solution control valve LV to the absorber pressure p0 relaxed. To close the cycle, the solution is pumped back into the cooker using the LP solution pump. Assuming ideal processes (circular processes in refrigeration technology), the Work rate of the refrigeration machine depending on the temperatures mentioned TK (Evaporator), TH (Expeller) and TM. Determine (condenser and absorber). To do this, imagine the refrigeration machine as a combination of a heat engine WK and a heat pump WP (Fig. 3). If both WK and WP work as Carnot machines, you get for the Work rate

. Practically always applies ε 1. A discussion of real absorption refrigeration machines can be made with the help of a lg-pPerform the -1 / T diagram. [OP]



Absorption chiller 1: Basic functional diagram of an absorption refrigeration machine, A: condenser / evaporator, B: volume to be cooled, C: connecting line, D: cooker / absorber, E: water cooling, F: heating source. In the cooling period (a), the environment to be cooled is withdrawn by evaporation of the refrigerant heat; the refrigerant vapor carried off the connection line to the absorber is absorbed there. In the heating period (b) the coolant is boiled in the absorber / cooker and in this way fed back to the evaporator / condenser.



Absorption chiller 2: Scheme of a continuously operating absorption refrigeration machine, drawn in a pressure-temperature diagram. The separation of the functions evaporator / condenser and absorber / cooker enables continuous operation. Note that three temperature levels are required.



Absorption chiller 3: Illustration of the theoretically maximum possible working factor of a refrigeration machine on the basis of three temperature levels. The actual heat pump WP is driven by a heat engine WK.

Reader opinion

If you have any comments on the content of this article, you can inform the editors by e-mail. We read your letter, but we ask for your understanding that we cannot answer every one.

Staff Volume I and II

Silvia Barnert
Dr. Matthias Delbrück
Dr. Reinald ice cream
Natalie Fischer
Walter Greulich (editor)
Carsten Heinisch
Sonja Nagel
Dr. Gunnar Radons
MS (Optics) Lynn Schilling-Benz
Dr. Joachim Schüller

Christine Weber
Ulrich Kilian

The author's abbreviation is in square brackets, the number in round brackets is the subject area number, a list of subject areas can be found in the foreword.

Katja Bammel, Berlin [KB2] (A) (13)
Prof. Dr. W. Bauhofer, Hamburg (B) (20, 22)
Sabine Baumann, Heidelberg [SB] (A) (26)
Dr. Günther Beikert, Viernheim [GB1] (A) (04, 10, 25)
Prof. Dr. Hans Berckhemer, Frankfurt [HB1] (A, B) (29)
Prof. Dr. Klaus Bethge, Frankfurt (B) (18)
Prof. Tamás S. Biró, Budapest [TB2] (A) (15)
Dr. Thomas Bührke, Leimen [TB] (A) (32)
Angela Burchard, Geneva [AB] (A) (20, 22)
Dr. Matthias Delbrück, Dossenheim [MD] (A) (12, 24, 29)
Dr. Wolfgang Eisenberg, Leipzig [WE] (A) (15)
Dr. Frank Eisenhaber, Heidelberg [FE] (A) (27 Essay Biophysics)
Dr. Roger Erb, Kassel [RE1] (A) (33)
Dr. Angelika Fallert-Müller, Groß-Zimmer [AFM] (A) (16, 26)
Dr. Andreas Faulstich, Oberkochen [AF4] (A) (Essay Adaptive Optics)
Prof. Dr. Rudolf Feile, Darmstadt (B) (20, 22)
Stephan Fichtner, Dossenheim [SF] (A) (31)
Dr. Thomas Filk, Freiburg [TF3] (A) (10, 15)
Natalie Fischer, Dossenheim [NF] (A) (32)
Prof. Dr. Klaus Fredenhagen, Hamburg [KF2] (A) (Essay Algebraic Quantum Field Theory)
Thomas Fuhrmann, Heidelberg [TF1] (A) (14)
Christian Fulda, Heidelberg [CF] (A) (07)
Frank Gabler, Frankfurt [FG1] (A) (22 essay data processing systems for future high-energy and heavy-ion experiments)
Dr. Harald Genz, Darmstadt [HG1] (A) (18)
Michael Gerding, Kühlungsborn [MG2] (A) (13)
Andrea Greiner, Heidelberg [AG1] (A) (06)
Uwe Grigoleit, Göttingen [UG] (A) (13)
Prof. Dr. Michael Grodzicki, Salzburg [MG1] (A, B) (01, 16 essay density functional theory)
Prof. Dr. Hellmut Haberland, Freiburg [HH4] (A) (Essay Cluster Physics)
Dr. Andreas Heilmann, Chemnitz [AH1] (A) (20, 21)
Carsten Heinisch, Kaiserslautern [CH] (A) (03)
Dr. Hermann Hinsch, Heidelberg [HH2] (A) (22)
Jens Hoerner, Hanover [JH] (A) (20)
Dr. Dieter Hoffmann, Berlin [DH2] (A, B) (02)
Renate Jerecic, Heidelberg [RJ] (A) (28)
Dr. Ulrich Kilian, Hamburg [UK] (A) (19)
Thomas Kluge, Mainz [TK] (A) (20)
Achim Knoll, Strasbourg [AK1] (A) (20)
Andreas Kohlmann, Heidelberg [AK2] (A) (29)
Dr. Barbara Kopff, Heidelberg [BK2] (A) (26)
Dr. Bernd Krause, Karlsruhe [BK1] (A) (19)
Ralph Kühnle, Heidelberg [RK1] (A) (05)
Dr. Andreas Markwitz, Dresden [AM1] (A) (21)
Holger Mathiszik, Bensheim [HM3] (A) (29)
Mathias Mertens, Mainz [MM1] (A) (15)
Dr. Dirk Metzger, Mannheim [DM] (A) (07)
Dr. Rudi Michalak, Warwick, UK [RM1] (A) (23)
Helmut Milde, Dresden [HM1] (A) (09 Essay Acoustics)
Guenter Milde, Dresden [GM1] (A) (12)
Maritha Milde, Dresden [MM2] (A) (12)
Dr. Christopher Monroe, Boulder, USA [CM] (A) (Essay Atom and Ion Traps)
Dr. Andreas Müller, Kiel [AM2] (A) (33 Essay Everyday Physics)
Dr. Nikolaus Nestle, Regensburg [NN] (A) (05)
Dr. Thomas Otto, Geneva [TO] (A) (06 Essay Analytical Mechanics)
Prof. Dr. Harry Paul, Berlin [HP] (A) (13)
Cand. Phys. Christof Pflumm, Karlsruhe [CP] (A) (06, 08)
Prof. Dr. Ulrich Platt, Heidelberg [UP] (A) (Essay Atmosphere)
Dr. Oliver Probst, Monterrey, Mexico [OP] (A) (30)
Dr. Roland Andreas Puntigam, Munich [RAP] (A) (14 Essay General Theory of Relativity)
Dr. Gunnar Radons, Mannheim [GR1] (A) (01, 02, 32)
Prof. Dr. Günter Radons, Stuttgart [GR2] (A) (11)
Oliver Rattunde, Freiburg [OR2] (A) (16 essay cluster physics)
Dr. Karl-Henning Rehren, Göttingen [KHR] (A) (Essay Algebraic Quantum Field Theory)
Ingrid Reiser, Manhattan, USA [IR] (A) (16)
Dr. Uwe Renner, Leipzig [UR] (A) (10)
Dr. Ursula Resch-Esser, Berlin [URE] (A) (21)
Prof. Dr. Hermann Rietschel, Karlsruhe [HR1] (A, B) (23)
Dr. Peter Oliver Roll, Mainz [OR1] (A, B) (04, 15 essay distributions)
Hans-Jörg Rutsch, Heidelberg [HJR] (A) (29)
Dr. Margit Sarstedt, Newcastle upon Tyne, UK [MS2] (A) (25)
Rolf Sauermost, Waldkirch [RS1] (A) (02)
Prof. Dr. Arthur Scharmann, Giessen (B) (06, 20)
Dr. Arne Schirrmacher, Munich [AS5] (A) (02)
Christina Schmitt, Freiburg [CS] (A) (16)
Cand. Phys. Jörg Schuler, Karlsruhe [JS1] (A) (06, 08)
Dr. Joachim Schüller, Mainz [JS2] (A) (10 essay analytical mechanics)
Prof. Dr. Heinz-Georg Schuster, Kiel [HGS] (A, B) (11 essay Chaos)
Richard Schwalbach, Mainz [RS2] (A) (17)
Prof. Dr. Klaus Stierstadt, Munich [KS] (A, B) (07, 20)
Cornelius Suchy, Brussels [CS2] (A) (20)
William J. Thompson, Chapel Hill, USA [WYD] (A) (Essay Computers in Physics)
Dr. Thomas Volkmann, Cologne [TV] (A) (20)
Dipl.-Geophys. Rolf vom Stein, Cologne [RVS] (A) (29)
Patrick Voss-de Haan, Mainz [PVDH] (A) (17)
Thomas Wagner, Heidelberg [TW2] (A) (29 essay atmosphere)
Manfred Weber, Frankfurt [MW1] (A) (28)
Markus Wenke, Heidelberg [MW3] (A) (15)
Prof. Dr. David Wineland, Boulder, USA [DW] (A) (Essay Atom and Ion Traps)
Dr. Harald Wirth, Saint Genis-Pouilly, F [HW1] (A) (20) Steffen Wolf, Freiburg [SW] (A) (16)
Dr. Michael Zillgitt, Frankfurt [MZ] (A) (02)
Prof. Dr. Helmut Zimmermann, Jena [HZ] (A) (32)
Dr. Kai Zuber, Dortmund [KZ] (A) (19)

Dr. Ulrich Kilian (responsible)
Christine Weber

Priv.-Doz. Dr. Dieter Hoffmann, Berlin

The author's abbreviation is in square brackets, the number in round brackets is the subject area number, a list of subject areas can be found in the foreword.

Markus Aspelmeyer, Munich [MA1] (A) (20)
Dr. Katja Bammel, Cagliari, I [KB2] (A) (13)
Doz. Hans-Georg Bartel, Berlin [HGB] (A) (02)
Steffen Bauer, Karlsruhe [SB2] (A) (20, 22)
Dr. Günther Beikert, Viernheim [GB1] (A) (04, 10, 25)
Prof. Dr. Hans Berckhemer, Frankfurt [HB1] (A, B) (29)
Dr. Werner Biberacher, Garching [WB] (B) (20)
Prof. Tamás S. Biró, Budapest [TB2] (A) (15)
Prof. Dr. Helmut Bokemeyer, Darmstadt [HB2] (A, B) (18)
Dr. Ulf Borgeest, Hamburg [UB2] (A) (Essay Quasars)
Dr. Thomas Bührke, Leimen [TB] (A) (32)
Jochen Büttner, Berlin [JB] (A) (02)
Dr. Matthias Delbrück, Dossenheim [MD] (A) (12, 24, 29)
Karl Eberl, Stuttgart [KE] (A) (Essay Molecular Beam Epitaxy)
Dr. Dietrich Einzel, Garching [DE] (A) (20)
Dr. Wolfgang Eisenberg, Leipzig [WE] (A) (15)
Dr. Frank Eisenhaber, Vienna [FE] (A) (27)
Dr. Roger Erb, Kassel [RE1] (A) (33 essay Optical phenomena in the atmosphere)
Dr. Christian Eurich, Bremen [CE] (A) (Essay Neural Networks)
Dr. Angelika Fallert-Müller, Groß-Zimmer [AFM] (A) (16, 26)
Stephan Fichtner, Heidelberg [SF] (A) (31)
Dr. Thomas Filk, Freiburg [TF3] (A) (10, 15 essay percolation theory)
Natalie Fischer, Walldorf [NF] (A) (32)
Dr. Harald Fuchs, Münster [HF] (A) (Essay Scanning Probe Microscopy)
Dr. Thomas Fuhrmann, Mannheim [TF1] (A) (14)
Christian Fulda, Hanover [CF] (A) (07)
Dr. Harald Genz, Darmstadt [HG1] (A) (18)
Michael Gerding, Kühlungsborn [MG2] (A) (13)
Prof. Dr. Gerd Graßhoff, Bern [GG] (A) (02)
Andrea Greiner, Heidelberg [AG1] (A) (06)
Uwe Grigoleit, Weinheim [UG] (A) (13)
Prof. Dr. Michael Grodzicki, Salzburg [MG1] (B) (01, 16)
Gunther Hadwich, Munich [GH] (A) (20)
Dr. Andreas Heilmann, Halle [AH1] (A) (20, 21)
Carsten Heinisch, Kaiserslautern [CH] (A) (03)
Dr. Christoph Heinze, Hamburg [CH3] (A) (29)
Dr. Marc Hemberger, Heidelberg [MH2] (A) (19)
Florian Herold, Munich [FH] (A) (20)
Dr. Hermann Hinsch, Heidelberg [HH2] (A) (22)
Priv.-Doz. Dr. Dieter Hoffmann, Berlin [DH2] (A, B) (02)
Dr. Georg Hoffmann, Gif-sur-Yvette, FR [GH1] (A) (29)
Dr. Gert Jacobi, Hamburg [GJ] (B) (09)
Renate Jerecic, Heidelberg [RJ] (A) (28)
Dr. Catherine Journet, Stuttgart [CJ] (A) (Essay nanotubes)
Prof. Dr. Josef Kallrath, Ludwigshafen, [JK] (A) (04 Essay Numerical Methods in Physics)
Priv.-Doz. Dr. Claus Kiefer, Freiburg [CK] (A) (14, 15 Essay Quantum Gravity)
Richard Kilian, Wiesbaden [RK3] (22)
Dr. Ulrich Kilian, Heidelberg [UK] (A) (19)
Dr. Uwe Klemradt, Munich [UK1] (A) (20, essay phase transitions and critical phenomena)
Dr. Achim Knoll, Karlsruhe [AK1] (A) (20)
Dr. Alexei Kojevnikov, College Park, USA [AK3] (A) (02)
Dr. Berndt Koslowski, Ulm [BK] (A) (Essay Surface and Interface Physics)
Dr. Bernd Krause, Munich [BK1] (A) (19)
Dr. Jens Kreisel, Grenoble [JK2] (A) (20)
Dr. Gero Kube, Mainz [GK] (A) (18)
Ralph Kühnle, Heidelberg [RK1] (A) (05)
Volker Lauff, Magdeburg [VL] (A) (04)
Priv.-Doz. Dr. Axel Lorke, Munich [AL] (A) (20)
Dr. Andreas Markwitz, Lower Hutt, NZ [AM1] (A) (21)
Holger Mathiszik, Celle [HM3] (A) (29)
Dr. Dirk Metzger, Mannheim [DM] (A) (07)
Prof. Dr. Karl von Meyenn, Munich [KVM] (A) (02)
Dr. Rudi Michalak, Augsburg [RM1] (A) (23)
Helmut Milde, Dresden [HM1] (A) (09)
Günter Milde, Dresden [GM1] (A) (12)
Marita Milde, Dresden [MM2] (A) (12)
Dr. Andreas Müller, Kiel [AM2] (A) (33)
Dr. Nikolaus Nestle, Leipzig [NN] (A, B) (05, 20 essays molecular beam epitaxy, surface and interface physics and scanning probe microscopy)
Dr. Thomas Otto, Geneva [TO] (A) (06)
Dr. Ulrich Parlitz, Göttingen [UP1] (A) (11)
Christof Pflumm, Karlsruhe [CP] (A) (06, 08)
Dr. Oliver Probst, Monterrey, Mexico [OP] (A) (30)
Dr. Roland Andreas Puntigam, Munich [RAP] (A) (14)
Dr. Andrea Quintel, Stuttgart [AQ] (A) (Essay nanotubes)
Dr. Gunnar Radons, Mannheim [GR1] (A) (01, 02, 32)
Dr. Max Rauner, Weinheim [MR3] (A) (15 Essay Quantum Informatics)
Robert Raussendorf, Munich [RR1] (A) (19)
Ingrid Reiser, Manhattan, USA [IR] (A) (16)
Dr. Uwe Renner, Leipzig [UR] (A) (10)
Dr. Ursula Resch-Esser, Berlin [URE] (A) (21)
Dr. Peter Oliver Roll, Ingelheim [OR1] (A, B) (15 essay quantum mechanics and its interpretations)
Prof. Dr. Siegmar Roth, Stuttgart [SR] (A) (Essay nanotubes)
Hans-Jörg Rutsch, Walldorf [HJR] (A) (29)
Dr. Margit Sarstedt, Leuven, B [MS2] (A) (25)
Rolf Sauermost, Waldkirch [RS1] (A) (02)
Matthias Schemmel, Berlin [MS4] (A) (02)
Michael Schmid, Stuttgart [MS5] (A) (Essay nanotubes)
Dr. Martin Schön, Constance [MS] (A) (14)
Jörg Schuler, Taunusstein [JS1] (A) (06, 08)
Dr. Joachim Schüller, Dossenheim [JS2] (A) (10)
Richard Schwalbach, Mainz [RS2] (A) (17)
Prof. Dr. Paul Steinhardt, Princeton, USA [PS] (A) (Essay quasicrystals and quasi-unit cells)
Prof. Dr. Klaus Stierstadt, Munich [KS] (B)
Dr. Siegmund Stintzing, Munich [SS1] (A) (22)
Cornelius Suchy, Brussels [CS2] (A) (20)
Dr. Volker Theileis, Munich [VT] (A) (20)
Prof. Dr. Gerald 't Hooft, Utrecht, NL [GT2] (A) (essay renormalization)
Dr. Annette Vogt, Berlin [AV] (A) (02)
Dr. Thomas Volkmann, Cologne [TV] (A) (20)
Rolf vom Stein, Cologne [RVS] (A) (29)
Patrick Voss-de Haan, Mainz [PVDH] (A) (17)
Dr. Thomas Wagner, Heidelberg [TW2] (A) (29)
Dr. Hildegard Wasmuth-Fries, Ludwigshafen [HWF] (A) (26)
Manfred Weber, Frankfurt [MW1] (A) (28)
Priv.-Doz. Dr. Burghard Weiss, Lübeck [BW2] (A) (02)
Prof. Dr. Klaus Winter, Berlin [KW] (A) (essay neutrino physics)
Dr. Achim Wixforth, Munich [AW1] (A) (20)
Dr. Steffen Wolf, Berkeley, USA [SW] (A) (16)
Priv.-Doz. Dr. Jochen Wosnitza, Karlsruhe [JW] (A) (23 essay organic superconductors)
Priv.-Doz. Dr. Jörg Zegenhagen, Stuttgart [JZ3] (A) (21 essay surface reconstructions)
Dr. Kai Zuber, Dortmund [KZ] (A) (19)
Dr. Werner Zwerger, Munich [WZ] (A) (20)

Dr. Ulrich Kilian (responsible)
Christine Weber

Priv.-Doz. Dr. Dieter Hoffmann, Berlin

The author's abbreviation is in square brackets, the number in round brackets is the subject area number, a list of subject areas can be found in the foreword.

Prof. Dr. Klaus Andres, Garching [KA] (A) (10)
Markus Aspelmeyer, Munich [MA1] (A) (20)
Dr. Katja Bammel, Cagliari, I [KB2] (A) (13)
Doz. Hans-Georg Bartel, Berlin [HGB] (A) (02)
Steffen Bauer, Karlsruhe [SB2] (A) (20, 22)
Dr. Günther Beikert, Viernheim [GB1] (A) (04, 10, 25)
Prof. Dr. Hans Berckhemer, Frankfurt [HB1] (A, B) (29 Essay Seismology)
Dr. Werner Biberacher, Garching [WB] (B) (20)
Prof. Tamás S. Biró, Budapest [TB2] (A) (15)
Prof. Dr. Helmut Bokemeyer, Darmstadt [HB2] (A, B) (18)
Dr. Thomas Bührke, Leimen [TB] (A) (32)
Jochen Büttner, Berlin [JB] (A) (02)
Dr. Matthias Delbrück, Dossenheim [MD] (A) (12, 24, 29)
Prof. Dr. Martin Dressel, Stuttgart (A) (essay spin density waves)
Dr. Michael Eckert, Munich [ME] (A) (02)
Dr. Dietrich Einzel, Garching (A) (essay superconductivity and superfluidity)
Dr. Wolfgang Eisenberg, Leipzig [WE] (A) (15)
Dr. Frank Eisenhaber, Vienna [FE] (A) (27)
Dr. Roger Erb, Kassel [RE1] (A) (33)
Dr. Angelika Fallert-Müller, Groß-Zimmer [AFM] (A) (16, 26)
Stephan Fichtner, Heidelberg [SF] (A) (31)
Dr. Thomas Filk, Freiburg [TF3] (A) (10, 15)
Natalie Fischer, Walldorf [NF] (A) (32)
Dr. Thomas Fuhrmann, Mannheim [TF1] (A) (14)
Christian Fulda, Hanover [CF] (A) (07)
Frank Gabler, Frankfurt [FG1] (A) (22)
Dr. Harald Genz, Darmstadt [HG1] (A) (18)
Prof. Dr. Henning Genz, Karlsruhe [HG2] (A) (Essays Symmetry and Vacuum)
Dr. Michael Gerding, Potsdam [MG2] (A) (13)
Andrea Greiner, Heidelberg [AG1] (A) (06)
Uwe Grigoleit, Weinheim [UG] (A) (13)
Gunther Hadwich, Munich [GH] (A) (20)
Dr. Andreas Heilmann, Halle [AH1] (A) (20, 21)
Carsten Heinisch, Kaiserslautern [CH] (A) (03)
Dr. Marc Hemberger, Heidelberg [MH2] (A) (19)
Dr. Sascha Hilgenfeldt, Cambridge, USA (A) (essay sonoluminescence)
Dr. Hermann Hinsch, Heidelberg [HH2] (A) (22)
Priv.-Doz. Dr. Dieter Hoffmann, Berlin [DH2] (A, B) (02)
Dr. Gert Jacobi, Hamburg [GJ] (B) (09)
Renate Jerecic, Heidelberg [RJ] (A) (28)
Prof. Dr. Josef Kallrath, Ludwigshafen [JK] (A) (04)
Priv.-Doz. Dr. Claus Kiefer, Freiburg [CK] (A) (14, 15)
Richard Kilian, Wiesbaden [RK3] (22)
Dr. Ulrich Kilian, Heidelberg [UK] (A) (19)
Thomas Kluge, Jülich [TK] (A) (20)
Dr. Achim Knoll, Karlsruhe [AK1] (A) (20)
Dr. Alexei Kojevnikov, College Park, USA [AK3] (A) (02)
Dr. Bernd Krause, Munich [BK1] (A) (19)
Dr. Gero Kube, Mainz [GK] (A) (18)
Ralph Kühnle, Heidelberg [RK1] (A) (05)
Volker Lauff, Magdeburg [VL] (A) (04)
Dr. Anton Lerf, Garching [AL1] (A) (23)
Dr. Detlef Lohse, Twente, NL (A) (essay sonoluminescence)
Priv.-Doz. Dr. Axel Lorke, Munich [AL] (A) (20)
Prof. Dr. Jan Louis, Halle (A) (essay string theory)
Dr. Andreas Markwitz, Lower Hutt, NZ [AM1] (A) (21)
Holger Mathiszik, Celle [HM3] (A) (29)
Dr. Dirk Metzger, Mannheim [DM] (A) (07)
Dr. Rudi Michalak, Dresden [RM1] (A) (23 essay low temperature physics)
Günter Milde, Dresden [GM1] (A) (12)
Helmut Milde, Dresden [HM1] (A) (09)
Marita Milde, Dresden [MM2] (A) (12)
Prof. Dr. Andreas Müller, Trier [AM2] (A) (33)
Prof. Dr. Karl Otto Münnich, Heidelberg (A) (Essay Environmental Physics)
Dr. Nikolaus Nestle, Leipzig [NN] (A, B) (05, 20)
Dr. Thomas Otto, Geneva [TO] (A) (06)
Priv.-Doz. Dr. Ulrich Parlitz, Göttingen [UP1] (A) (11)
Christof Pflumm, Karlsruhe [CP] (A) (06, 08)
Dr. Oliver Probst, Monterrey, Mexico [OP] (A) (30)
Dr. Roland Andreas Puntigam, Munich [RAP] (A) (14)
Dr. Gunnar Radons, Mannheim [GR1] (A) (01, 02, 32)
Dr. Max Rauner, Weinheim [MR3] (A) (15)
Robert Raussendorf, Munich [RR1] (A) (19)
Ingrid Reiser, Manhattan, USA [IR] (A) (16)
Dr. Uwe Renner, Leipzig [UR] (A) (10)
Dr. Ursula Resch-Esser, Berlin [URE] (A) (21)
Dr. Peter Oliver Roll, Ingelheim [OR1] (A, B) (15)
Hans-Jörg Rutsch, Walldorf [HJR] (A) (29)
Rolf Sauermost, Waldkirch [RS1] (A) (02)
Matthias Schemmel, Berlin [MS4] (A) (02)
Prof. Dr. Erhard Scholz, Wuppertal [ES] (A) (02)
Dr. Martin Schön, Konstanz [MS] (A) (14 essay special theory of relativity)
Dr. Erwin Schuberth, Garching [ES4] (A) (23)
Jörg Schuler, Taunusstein [JS1] (A) (06, 08)
Dr. Joachim Schüller, Dossenheim [JS2] (A) (10)
Richard Schwalbach, Mainz [RS2] (A) (17)
Prof. Dr. Klaus Stierstadt, Munich [KS] (B)
Dr. Siegmund Stintzing, Munich [SS1] (A) (22)
Dr. Berthold Suchan, Giessen [BS] (A) (Essay Philosophy of Science)
Cornelius Suchy, Brussels [CS2] (A) (20)
Dr. Volker Theileis, Munich [VT] (A) (20)
Prof. Dr. Stefan Theisen, Munich (A) (essay string theory)
Dr. Annette Vogt, Berlin [AV] (A) (02)
Dr. Thomas Volkmann, Cologne [TV] (A) (20)
Rolf vom Stein, Cologne [RVS] (A) (29)
Dr. Patrick Voss-de Haan, Mainz [PVDH] (A) (17)
Dr. Thomas Wagner, Heidelberg [TW2] (A) (29)
Manfred Weber, Frankfurt [MW1] (A) (28)
Dr. Martin Werner, Hamburg [MW] (A) (29)
Dr. Achim Wixforth, Munich [AW1] (A) (20)
Dr. Steffen Wolf, Berkeley, USA [SW] (A) (16)
Dr. Stefan L. Wolff, Munich [SW1] (A) (02)
Priv.-Doz. Dr. Jochen Wosnitza, Karlsruhe [JW] (A) (23)
Dr. Kai Zuber, Dortmund [KZ] (A) (19)
Dr. Werner Zwerger, Munich [WZ] (A) (20)

Articles on the topic

Load.

Interactive flow diagram of the production plant - chemistry and physics

[PDF] Download Physics - The Study Guide: All basics at a glance: For physicists - engineers and natural scientists (German Edition) Free of charge From the Back Cover When an excellent physics student summarizes all of the exam-relevant material up to the bachelor's degree - and when a team of committed physics students comment on this compact work - translated into German and additionally adapted: the result is a book that has been tried and tested and is optimal Helps you prepare for physics exams! Due to the understandable language and the compact presentation of the topics mechanics - electrodynamics - optics - relativity theory - thermodynamics and quantum mechanics, the study guide is suitable both as a book for learning † † œ as well as for repetition and reference for advanced. Physics students - engineering or related natural sciences - will find detailed derivations of all central physical equations here - as well as many well-commented calculation examples and compact overviews. Commented references help you read on. The study guide at a glance: Compact learning compendium - particularly suitable for exam preparationOffers all the essential basics of the bachelor's degree for physics students and students with a minor in physicsWith many detailed calculation examples and compact overviews Read more About the Author Lowry Kirkby is a physicist and the author of the original English edition 'Physics: A Student Companion '- published by Scion Publishing in 2011. Read more

General information and resources

The exact description of natural processes or experiments is an essential task of the physicist. It depends on precise observation and clear formulation. The following bullet points are intended to help you describe the experiment.

• Make brief notes while the experiment is being carried out.

• Think of a structure for the description - similar to the German essay. Subsection points can be:

• Formulate your observations in clear, concise sentences.

• Concentrate on the essentials. Irrelevant matters do not need to be described.

• The description is usually facilitated by an instructive, labeled sketch. It is often useful to present the test results in the form of a diagram. Please note the information on creating diagrams.

• Make a strict distinction between observation and explanation of the experiment.

• When explaining the results of an experiment, it is important to present the chain of thought that leads to the explanation of an experiment in a clear and concise manner. As a rule, you have to fall back on what you have already learned. Often you first have to make a calculation with the measurement results in order to arrive at a meaningful interpretation. In this case, the instructions for calculating with physical quantities must be observed. There is a close relationship between the "explanation" of an experiment and the "justification" of a fact in mathematics: logical argumentation is required!

Example 1: Twisted circuit

Initial situation: The teacher will show you an electrical circuit in which three lights and four switches are connected to a voltage source in a way that is unusual for you. The circuit is protected with a fuse for overload. Open switches are initially closed in two separate experiments.

Your task is to represent the circuit in a clear circuit diagram and to explain it briefly. Finally, the special position of the switches in the two partial experiments must be dealt with and the brightness state of the lamps (lamp lights up or does not light up) is described. The interpretations of the partial experiments then follow separately from the description of the experiment.

Circuit diagram: All switches are open

The circuit shown in the adjacent sketch contains three lamps L of the same type1, L2 and L3. With the switches S1, S.2, S.3 and S.4 different states can be established in the circuit. A DC voltage source (4.5V) is used for the supply. There is a fuse in the main line to protect the circuit from overload.

• Ensure that the circuit diagram complies with the standard.

• If the characteristics of the lights were known, they should be mentioned in the introductory text.

Circuit diagram: switch S1 and S.4 are closed

Carrying out the experiment: S.1 and S.4 are closed (p2 and S.3 are still open).

Observation: L.1 and L3 do not light up, L2 shines.

• The closed switch S1 bridged L1 (Short circuit). All current flows through the switch and not through the lamp, which is a resistor.

• The lamp L3 does not light up because it is not in a closed circuit.

• The lamp L2 shines. It lies in a closed circuit, in which the current from the positive pole via the fuse, the switch S1who have favourited L lamp2 and the switch S4 flows to the negative pole of the source.

Note: The sketch with the changed switch positions and the glowing lamp does not necessarily have to be drawn. However, it supports the clarity.

Circuit diagram: switch S3 and S.4 are closed

Carrying out the experiment: S.3 and S.4 are closed (p1 and S.2 are still open).

Observation: All three lamps light up. L.2 and L3 shine equally brightly, but not as brightly as L1.

• The current flows from the positive pole via the fuse through L1, then divides into those from L2 or L3 and S.3 existing, parallel-connected circles and finally flows over S4 to the negative pole.

• By L2 or L3 half of the current flows through L1 flows. This causes L to light up2 and L3 equally bright, but less bright than L1.

Note: The sketch with the changed switch positions and the glowing lamps does not necessarily have to be drawn. However, it supports the clarity.

Example 2: conductivity of water

Photography: 2nd attempt Photography: 1st attempt

Initial situation: The teacher will show you two experiments as indicated in the adjacent pictures. They are used to investigate the conductivity of water.

Your task is to represent the circuits in clear circuit diagrams and to briefly explain the structure. Description of the respective test result. The explanations of the partial experiments then follow separately from the experiment descriptions. By comparing the two experiments, a statement can be made about the conductivity of water.

Experiment 1: Experiment setup with light bulbs

Structure and implementation: Two metal electrodes, which do not touch each other, are immersed in the water (which is in a beaker). The low-voltage source is shown as a flat battery in the sketch opposite, a light bulb is connected in the circuit to verify the current.

Observation: The light bulb does not light up.

Explanation (Due to the fact that the light bulb is not lit, several interpretations are possible)

• Water is a non-conductor, so no electricity flows and the lamp does not light up.

• With the relatively low battery voltage and the comparatively insensitive "light bulb" current indicator, it is not possible to detect the low current.

Experiment 2: Experiment setup with glow lamps

Structure and implementation: Two metal electrodes that do not touch each other are immersed in the water (which is in a beaker). A power supply unit (approx. 100V) serves as the voltage source, and a glow lamp is connected to the circuit to verify the current.

Observation: The glow lamp lights up.

Explanation: Due to the higher "voltage" of the voltage source and the sensitive current indicator "glow lamp" it can be proven that water conducts the electricity.


VR and AR: From the assembly assistance system to learning in the virtual "metaverse"

The FHTW experts Horst Orsolits and Maximilian Lackner have published a book that deals with the use of virtual and augmented reality systems in digital production. In an interview, the two experts explain how the technologies are used in industry today - and how they will change our everyday lives in the future.

Virtual and augmented reality are often associated with computer and video games, but the technologies are also becoming increasingly important in many areas of industry. The book Virtual Reality and Augmented Reality in Digital Production pays particular attention to this segment. Well-known experts from universities and companies in German-speaking countries show with their contributions the wide range of possible applications of VR and AR - from machine simulation to employee training. The book published last year by Verlag Springer Gabler was published by Horst Orsolits and Maximilian Lackner from the Faculty of Industrial Engineering at UAS Technikum Wien. "We deliberately gave the authors few guidelines in terms of the choice of topics and depth, and we really wanted to provide the broadest possible overview of both topics," says Orsolits, who heads the Virtual Technologies & Sesor Systems competence field. His colleague Lackner is the head of the master’s courses in Innovation and Technology Management and International Industrial Engineering at the FHTW. In an interview, the two experts explain why VR and AR are becoming increasingly important in production - and how the technologies will have a say in our everyday lives in the near future.

Virtual and augmented reality are not new topics. The book you have published shows that both are currently gaining in importance in various areas of industry. Why is the topic "pulling" right now?

Maximilian Lackner:It always takes a certain amount of time before a technology can establish itself. That was also the case with 3D printing. There was a lot of hype five years ago, but 3D printing has actually been around for 30 years. There is a classic theory of how innovation works: There are the “early innovators” who are always involved with every new gimmick. And there are those who take a little longer to pop up. It's similar with AR and VR: the topic had to settle a bit before you noticed the advantages the technologies offer. The development is also closely related to the topic of digitization - the companies have recognized that they have to do something in this area.

Horst Orsolits: I would like to highlight one more technical innovation as a “fire accelerator” for augmented reality: that is the development of the mobile phone. The processor technology as well as the lens and camera technology - both are essential for VR and AR - have advanced so rapidly that the price-performance ratio of the technology has become interesting. Today I can get VR glasses for 200 to 300 euros. I can use augmented reality conveniently on my mobile phone. And with the technology, the platform was then also there for the software providers to get on board and to reopen the market. Bringing the application into an industrial context was only a matter of time.

The subject of the book is the possible uses in digital production. Where are the most important areas of application here?

Lackner: I see that strongly in the area of ​​training. Here you can accelerate the onboarding of new employees or convey complex issues.

Orsolits: Training for new employees or employees who are to be trained or maintenance and repair are currently the most common areas of application in industry. As far as repair or assembly instructions are concerned, many processes can be digitally supported here. There are studies that say that you can speed up the processes by up to 40 percent in this area - if you no longer have to laboriously look in the manual each time to see where which screw goes next. This has been relatively well received in industry.

What about the direct integration of VR / AR technologies into production processes?

Orsolits:The industry is still very much waiting. Series production works in series and is optimized through automation. However, assistance systems are increasingly coming into focus where companies understand that smaller batch sizes and more flexible production bring advantages on the market. There you can achieve significant reductions in changeover times. I know of some companies in Austria that use such assistance systems on the assembly line to show the assembly staff the location of parts such as an engine block directly via glasses or the augmented monitor. Here the series changes approximately every ten pieces. The employee receives the new assembly instructions directly without having to look for catalog A or B.

The book also deals with virtual learning worlds. Has the corona pandemic accelerated development in this area with the online meetings that are now everyday?

Lackner: I think that Corona has made a lot more conceivable than before. For example with the corporate tourism topic: in the past you always said you had to go somewhere and be there. Now many have recognized that this is not the case and that virtuality works well after all. That, of course, gave the whole thing a boost.

Orsolits:As with digitization, Corona was the ultimate accelerator for virtual learning. For months, more and more virtual worlds have been created, which are summarized under the collective term "Metaverse". Microsoft, for example, recently entered the market with “Microsoft Mesh” as a mixed reality platform for simultaneous, location-independent participation in meetings or events. Such multi-user VR environments, in which you meet several people in a virtual room in order to be able to interact there, are currently experiencing great growth. Spatial IO, one of the first companies in the field, is also well advanced. With this tool you can hold meetings, design workshops and the like and create so-called 3D avatars: You are filmed and then see yourself in virtual space. This is another step towards immersion.

The development is still in its infancy, but it will definitely be a big topic in the next half-year or year. We have already held such meetings with some students and I would like to use this method to present CAD objects to our students in the near future. In the meantime, there are also extensions for mobile phone and desktop versions, so there is no longer any need to use VR glasses.

However, virtual / mixed reality is clearly to be called THE technology here. In augmented reality there are a few attempts in which holoportation is realized. To do this, however, you need an elaborate scanner or several cameras on your desk. I could then “teleport” myself as a whole to my students' home, where they can put me on my desk with my cell phone and follow the course. Technically, this has largely been solved, but due to the high costs, available bandwidths and complexity in use, it is still predominantly found in research.

Where is the topic of VR / AR currently reflected in research and teaching at the FHTW?

Orsolits: The field of VR / AR is huge - there is a huge range from the games industry to medical use and the manufacturing industry, to name just a few. In the Faculty of Industrial Engineering we concentrate on the application-related use of technologies in synergy with production, robotics and industry in general. In my opinion, these technologies have now also reached the maturity level to be used in the classroom or in distance learning. In some cases I already use AR tools in my teaching. I meet the students via zoom, they then open the AR control and I explain to them how they can use it to control a digital model of a robot in augmented reality on the coffee table.

I have just received approval from the City of Vienna for a research project on the subject of integrating virtual technologies into teaching. It starts in September and will run for three years with the aim of enabling virtual laboratory exercises and augmented reality experiences to make learning easier. If, for example, we want to explain to a freshman how a planetary gear works, we now have to squeeze the understanding from our three-dimensional world into many 2D images. AR, on the other hand, enables students to look at such a transmission with a cell phone or glasses, disassemble it, interact with it and view it from all sides. There is immense potential for teaching here.

How will VR and AR develop in the coming years?

Orsolits: With my answer I'm leaning a little out of the window. Market forecasts assume growth of € 125 billion over the next four years. The "Big 5" (Microsoft, Facebook, Apple, Amazon, Google) on the west coast of the USA are currently investing tens of billions in AR and VR. It is a very realistic scenario that there will be platforms, similar to the film “Ready Player One”, where you log into something like a digital copy of the world. You can meet your friends there in artificial surroundings, take part in meetings or go shopping. A few hours later you have what you have chosen in front of the door. This is possible thanks to Amazon's dominance of logistics. I guess that's coming simply because it's a huge market. And as far as technology is concerned: the mobile phone as a crutch that you have to hold in your hand all the time will disappear again at some point. A patent from Apple suggests that a lot is being transferred from the cell phone display to glasses. Apple will bring out such glasses this year or next year. It will weigh 100-150 grams, similar to ordinary optical glasses, but the computing unit will still be the cell phone. From what one hears from Silicon Valley, it is to be expected that in three to four years' time data glasses will have achieved a level of wearing comfort and a quality that will practically become an indispensable part of everyday life.


Link between process development and high-tech chemistry

There is a wide range of customer requirements for the production of fine chemicals under cGMP (current Good Manufacturing Practice) conditions. With the ZeTOTM (Zentrales Technikum Organisch) in Leverkusen, Bayer AG meets customer requirements for complex process developments and highly specialized chemical technologies such as phosgenation, azide chemistry, low-temperature reactions and continuous chromatography. The new production facility of Novochem 2000 S.A. for active ingredients and intermediates in Murcia, Spain, around 90 km from Alicante, will now complement the portfolio in traditional process engineering. In this triad of process development and reaction management under increased safety and apparatus requirements in the ZeTOTM, Novochem stands for cost-effective production of active ingredients.

The new multi-substance plant is designed for flexibility and quick product changes with well-developed processes and well-known parameters that are critical for quality. It is designed for capacities of 100 kilograms, for example for phase 3 of clinical trials up to the production of over 100 tons. The plant, which is used exclusively by Bayer, is owned by Novochem, a subsidiary of Derivados Químicos S.A. (DQ). DQ is a Spanish company with decades of experience in contract manufacturing for fine chemicals, with which Bayer has been working since 1993.

Novochem is designed for all classic reactions in organic chemistry and offers a very good combination of a cost-effective production facility with process engineering expertise from Bayer. Around 30 million euros have been invested in the system, which will also work under cGMP conditions from mid-2002. Production planning and logistics are fully integrated into the supply chain management of Bayer's fine chemicals business & # 8211 and benefit from all the advantages of the strong backward integration.

The modern cGMP plant in Murcia was designed by Bayer's engineering department. It has six production lines with a & # 8222top to bottom & # 8220 production flow. Five of them are designed for solids production, one for hydrogenation and distillation. All main devices can be combined with one another. A very versatile and effective tool box has been created thanks to the versatile combination options that result from the interconnection of the various product lines. The requirements for the chemical resistance of the materials were taken into account through the use of glass, enamel, stainless steel and Hastelloy.

Special connection techniques enable quick retrofitting and offer advantages in terms of cleaning. A special focus in the & # 8222Design & # 8220 of the system was on the flexibility of the equipment while at the same time strictly avoiding cross-contamination. The clean rooms (class E) of each line are equipped with air filter systems and air locks for material and personnel. The entire production process & # 8211 up to the packaging of the dried product & # 8211 takes place without intermediate insulation in a closed working method of a production line.

In addition to the filter driers, the centrifuges are particularly suitable for isolating end products because they can be completely emptied and a CIP (Clean In Place) system is installed. Distillation columns and thin-film evaporators for temperature-sensitive products complete the technical portfolio, as does the Biazzi reactor for the hydrogenation of intermediate stages.

In addition to the apparatus technology, the integration into the process development of Bayer is decisive. ZeTOTM supports process development, definition of critical process parameters, definition of operating ranges and adaptation to the Novochem plant technology designed by Bayer. The quality assurance system is another focus.

Novochem and Bayer developed the quality and instruction system in close cooperation. The quality system is maintained through constant exchange of experience, joint training courses and coordinated implementation of guidelines. Routine inspections by Bayer inspectors complement the quality assurance system. The products manufactured are Bayer products. The control of the input materials, the technology transfer and the release for dispatch are therefore carried out by Bayer.


  • fertilizer
  • Building materials industry: cement additive
  • Additive in chemical drain cleaners
  • Chemical manufacturing: potassium nitrate
  • formerly also for the production of nitric acid
  • as preservative E 251
  • for curing meat and sausage products (also with sodium nitrite E 250 and potassium nitrite E 249)
  • PCM for thermal storage

Food additive

Nitrate works against bacteria, especially against the botulism pathogen (Clostridium botulinum). During the curing process, the chemically poorly resistant muscle dye (myoglobin) is converted into a more stable variant (reddening). As a result, the meat retains its red color. Uncured meat and sausage products take on a gray color, which the consumer can mistakenly take as an indication of spoilage. In addition, a typical aroma is developed during curing.

Sodium nitrate is used in sausages, hard cheese, semi-hard cheese, pickled herrings and sprats.

Nitrates themselves are harmless. Their use is problematic because they are converted into nitrites. This transformation is possible in food, but also in the human body. Nitrites dilate blood vessels and lower blood pressure. In higher doses they can lead to acute symptoms of intoxication (methaemoglobin formation). However, nitrite can also be converted into highly carcinogenic nitrosamines with the simultaneous absorption of protein in the human body.


Interactive flow diagram of the production plant - chemistry and physics

Rousta: "The Ministry of Finance and Economy funds research in the institutes of the Hahn-Schickard Society with around 4.3 million euros"

“The Ministry of Finance and Economics is funding research in the institutes of the Hahn-Schickard Society with around 4.3 million euros in 2011,” explained Daniel Rousta, Ministerial Director in the Ministry of Finance and Economics, during his visit to the Institute for Micro- and information technology (HSG-IMIT) in Villingen-Schwenningen. Die Hahn-Schickard-Gesellschaft für angewandte Forschung e.V. (HSG) ist Träger des Instituts für Mikro- und Informationstechnik (HSG-IMIT) in Villingen-Schwenningen und des Instituts für Mikroaufbautechnik (HSG-IMAT) in Stuttgart-Vaihingen.

„Die Förderung der wirtschaftsnahen Forschungseinrichtungen ist für die neue Landesregierung eine der wesentlichen Säulen der Technologiepolitik des Lan-des“, betonte Ministerialdirektor Rousta. „Mit starken wirtschaftsnahen For-schungsinstituten verbessern wir die Rahmenbedingungen für Innovationen aus dem Mittelstand und bauen den Technologietransfer zwischen Forschung und Wirtschaft weiter aus“, sagte Rousta.

„Die Förderung des Landes bildet ein zentrales Standbein der anwendungsorientierten Forschung. Auf dieser Grundlage gelingt der HSG den Transfer zukunftsweisender Technologien in den industriellen Mittelstand" führte Professor Holger Reinecke, Sprecher der Institutsleitung, aus.

„Das HSG-IMIT in Villingen-Schwenningen ist eine wichtige Säule im Cluster MicroTec Südwest“, sagte Rousta während seines Antrittsbesuchs im Institut. Das Cluster gewann im Januar 2010 den Spitzenclusterwettbewerb des Bundesforschungsministeriums und erhält damit von Bund und Land eine Förderung von bis zu 45 Millionen Euro. Ein besonderes Highlight des Spitzenclusters ist die Produktionsplattform PRONTO. Sie wird gemeinsam von den HSG-Instituten und dem Institut für Mikroelektronik (IMS CHIPS) Stuttgart betrieben. Auf diese Weise soll der Industrie ein Instrument zur Verfügung gestellt werden, um branchenunabhängig die Anwendung verschiedenster Mikrosystem Technologien für eigene Produkt-Innovationen zu erproben, einzuführen und Unterstützung beim Aufbau einer Serienfertigung zu bekommen.

Das HSG-IMIT in Villingen-Schwenningen beschäftigt sich unter anderem mit Mikrosensoren auf Silizium-Basis, Lab-on-a-Chip-Systemen und Medikamentendosiersystemen. Eine aktuelle Entwicklung, die in Kooperation mit regionalen Partnern entstand, ist ein kostengünstiges System zur Erfassung von Kopfbewegungen, welches zusammen mit einer 3D-fähigen Videobrille zur Darstellung von Multimediainhalten und Spielen verwendet werden kann. Ein weiteres Entwicklungs-Highlight ist der thermische Strömungssensorchip, der zur Luftmengenregelung in Klimaanlagen eingesetzt wird. Im letzten Jahr wurde sowohl der Sensorchip als auch die Gehäusetechnik komplett überarbeitet. Das Ergebnis ist ein Sensorelement, dessen äußere Abmessungen deutlich reduziert wurden. Gleichzeitig konnte der Messbereich um den Faktor 5 erweitert werden. Diese Entwicklung hat die Forschungsvereinigung „Räumliche Elektronische Baugruppen 3-D MID“ mit ihrem Innovationspreis 2011 ausgezeichnet.

Die Institute der Hahn-Schickard-Gesellschaft sind Mitglieder der Innovationsallianz Baden-Württemberg „innBW“. Im Jahr 2008 haben sich die Vertragsforschungseinrichtungen in Baden-Württemberg zur Innovationsallianz zusammengeschlossen. Die Institute der Innovationsallianz werden im Jahr 2011 durch das Ministerium für Finanzen und Wirtschaft mit über 22,3 Millionen Euro gefördert. Sie sind ein wichtiger Partner der Wirtschaft im Technologietransfer und bilden eine Brücke zwischen Grundlagenforschung und der Entwicklung in Unternehmen. Die Institute forschen erfolgreich in den Wachstumsfeldern der Zukunft, entlang derer die neue Landesregierung ihre Technologiepolitik ausrichten wird. Das fachliche Spektrum der Forschungsarbeit reicht von Mikroelektronik, Informatik, Biotechnologie und Medizintechnik bis hin zu Lasertechnik und erneuerbaren Energien. Mehr Informationen unter http://www.innbw.de

Mehr Informationen zur Hahn-Schickard-Gesellschaft:

Partner für Miniaturisierung und Systemintegration
Anwendungsorientierte Forschung und Entwicklung sowie Transfer von der Wissenschaft zur Industrie sind die Hauptaufgaben der Hahn-Schickard-Institute HSG-IMAT und HSG-IMIT. Sie verstehen sich als Partner der Wirtschaft für Miniaturisierung und Systemintegration. Mehr als die Hälfte der Umsätze mit Industrieunternehmen erfolgt im Auftrag von baden-württembergischen Firmen. Im vergangenen Jahr bearbeiteten die 128 (FTE) Forscherinnen und Forscher der HSG Aufträge von Industrieunternehmen und der öffentlichen Hand in Höhe von zusammen rund 8 Millionen Euro. Mehr als die Hälfte der Aufträge aus der Wirtschaft kamen von kleinen und mittleren Unternehmen und rund 60 % von Unternehmen aus Baden-Württemberg. Die Symbiose mit den Universitäten Stuttgart und Freiburg bringt laufend neue Impulse für neue Produkte hervor. Die beiden HSG-Institute zusammen sind in der Lage, Innovationen aus einer Hand anzubieten: vom System bis zum umschließenden Gehäuse.

HSG-IMAT http://www.hsg-imat.de
In enger Verbindung mit der Universität Stuttgart und ihrem Institut für Zeitmesstechnik, Fein- und Mikro-technik (IZFM) arbeitet das HSG-IMAT unter der Leitung von Prof. Dr. Heinz Kück auf dem Gebiet der Gehäuse- und Verbindungstechnik für Mikrosysteme. Ebenso entwickelt es Sensor- und Aktorsysteme in hybrider Aufbautechnik mit mikrostrukturierten MID (Molded Interconnect Devices). Das HSG-IMAT ist unmittelbar aus dem 1955 eröffneten Gründungsinstitut der Hahn-Schickard-Gesellschaft, dem Institut für Feinwerk- und Zeitmesstechnik, hervorgegangen.

Die Mikrosystemtechnik ist der Grundlagenforschung entwachsen und auf dem Weg in die breite kommerzielle Anwendung. Aber ohne Gehäuse, ohne Anschluss an die Elektronik und ohne kostengünstige Herstellungsverfahren kann die Industrie die miniaturisierten Sensoren und Aktoren kaum verwenden. An diesem Punkt setzt die Kompetenz des HSG-IMAT an. Künftige Mikrosysteme müssen sich vor allem durch kostengünstige Herstellungsverfahren auszeichnen, um breite Anwendung zu finden. Dies wird durch eine geschickte Kombination von Werkstoffen und Bauelementen erreicht. Das HSG-IMAT und das IZFM legen deshalb einen Schwerpunkt auf die Entwicklung mikrostrukturierter kostengünstiger Kunststoffbauteile zum Einsatz in der Mikrosystemtechnik.

Bei MID handelt es sich um dreidimensionale Leiterbilder auf Kunststoffbauteilen, die mittels Zwei-Komponenten-, Heißpräge- oder Lasertechnik hergestellt und mit Sensoren, Chips und Elektronik-Komponenten bestückt werden. So können Mikrosysteme mit Speichern, Schaltkreisen und Energieversorgung auf kleinstem Raum kombiniert werden. Das Verfahren eignet sich u.a. für die Herstellung langzeitstabiler elektromechanischer Baugruppen für Autos und Produktionsanlagen.

Für die Aufbau-, Gehäuse-, Verbindungs- und Montagetechniken verwendet das Institut Technologien wie Laserbearbeitung, Metallbeschichtung und Kunststoff-Mikrospritzguss sowie Heißpräge-, Löt- und Klebe-techniken. Die anwendungsorientierten Entwicklungen zielen stets auf die spätere Serienfertigung von Mikrosystemen für Fahrzeuge, Messgeräte, Automatisierungs-, Medizin- und Labortechnik durch die Industriepartner ab.

So können mit MID-Techniken – in welcher das HSG-IMAT weltweit eine herausragende Stellung ein-nimmt – ebenso Mikrokameras in elektronische Geräte integriert werden wie feinste Drehgeber in Stellantriebe der Automatisierungstechnik. Industriekunden lassen am Institut Prototypen innovativer Produkte mittels der MID-Technik herstellen. Aktuelle Beispiele für Entwicklungen des Instituts sind ein hochgenauer und dennoch sehr kostengünstiger Neigungssensor oder ein interaktives Pixelmodul für berührsensitive, grafikorientierte Braille-Flächendisplays für Blinde.

HSG-IMIT http://www.hsg-imit.de
Wie schon in den sechziger und siebziger Jahren infolge des Technologiewandels bei den Uhren so zeichnete sich auch in den achtziger Jahren eine neue Herausforderung ab. Die Hahn-Schickard-Gesellschaft öffnete sich 1985 für die Mikrotechnologien und Mikrosystemtechnik. Bald darauf folgte die Gründung des zweiten Forschungsinstituts der HSG, des Instituts für Mikro- und Informationstechnik (HSG-IMIT). Das Institut wurde in Villingen-Schwenningen angesiedelt, um der vom Niedergang der Uhrenindustrie betroffenen Region im mittleren Schwarzwald eine Keimzelle für neue unternehmerische und technologische Perspektiven zu geben.

Das HSG-IMIT gilt heute als eine der ersten Adressen für industrienahe, anwendungsorientierte Entwick-lung und Forschung in der Mikrosystemtechnik. Es beschäftigt rund 130 Wissenschaftler und Ingenieure und verfügte in 2010 über ein Budget von knapp 9 Mio. Euro. Zu den herausragenden Stärken zählen die Gesamtbetreuung von der Idee bis zur Produktion und die kurze „Time-to-market“-Spanne.

Es arbeitet eng mit nationalen und europäischen Institutionen der Technologieförderung zusammen und initiiert geförderte Verbundvorhaben. Dadurch erhalten kleine und mittelständische Unternehmen Zugang zur Mikrosystemtechnik, und zur Förderung ihrer Entwicklungsvorhaben. Der Schwerpunkt der Aktivitäten liegt in Deutschland. Die Kundenkontakte reichen jedoch bis Fernost und in die USA.

Das Institut hat sich auf langfristige Markttrends ausgerichtet. Es konzentriert sich auf die Zielmärkte Auto-motive, Life Sciences, Produktions- und Automatisierungstechnik sowie der Medizintechnik. Innerhalb der Zielmärkte setzt das HSG-IMIT auf Kernkompetenzen in den Fachbereichen Sensorik, Mikrofluidik, diagnostische Plattformen und in definierten mikrotechnischen Herstellungsprozessen. Die Fachbereiche konzentrieren sich auf wachstumsstarke, vielfältig einsetzbare Produkte.

Beispielhafte Entwicklungen sind die Biochip-Produktionsanlage TopSpot, intelligente Mikrodosiersysteme z.B. für elektronische Füller oder für medizintechnische Anwendungen, das Mikroventil MegaMic und das NanoJet-Dosierverfahren. Im Bereich der Sensorik ragen aus der Entwicklungspalette der thermische Neigungssensor, Taupunkt-, Drehraten- und Strömungssensoren hervor. Für den thermischen Neigungssensor erhielt das Institut mehrere nationale und internationale Innovationspreise. Am HSG-IMIT entstand darüber hinaus ein Verfahren zur kostengünstigen Massen-produktion von Chipkarten durch Laser-Mikrolöten.

Den wissenschaftlichen Nährboden für seine Innovationskraft findet das HSG-IMIT auch in der Kooperation mit der Universität Freiburg und der Fachhochschule Furtwangen. Drei Professoren des Instituts für Mikrosystemtechnik (IMTEK) der Universität Freiburg bilden seit Anfang 2005 das Leitungsgremium des HSG-IMIT.
Hahn-Schickard-Gesellschaft

Die Hahn-Schickard-Gesellschaft für angewandte Forschung e.V. http://www.hsg-mst.de ist eine gemeinnützige baden-württembergische Vereinigung von Industrieunternehmen. Sie geht auf die 1955 auf Initiative der Schwarzwälder Uhrenindustrie gegründete Forschungsgesellschaft für Uhren- und Feingerätetechnik e.V. zurück, zu deren ersten Aktivitäten die Gründung des gleichnamigen Instituts – des späteren IZFM – gehörte. Seit der Gründung steht die anwendungsorientierte Forschung für die Industrie im Mittelpunkt. Bahnbrechende Entwicklungen wie die Funkuhr wurden wesentlich von dieser Gesellschaft mit vorangetrieben. Handlungsfelder und Märkte haben sich zwischenzeitlich gewandelt. Seit 1984 befasst sie sich auch mit Mikrotechnologien und Mikrosystemtechnik. Sie trägt heute zwei Institute: das Institut für Mikro- und Informationstechnik (HSG-IMIT) in Villingen-Schwenningen und das Institut für Mik-roaufbautechnik (HSG-IMAT) in Stuttgart. Seit 1989 trägt die Forschungsgesellschaft zwei historische Vorreiter im Namen: Wilhelm Schickard (1592 bis 1635) und Philipp Matthäus Hahn (1739 bis 1790), beides legendäre Mathematiker, Physiker, Erfinder und Konstrukteure aus Südwestdeutschland.

Features of this press release:
Journalisten, Wirtschaftsvertreter, jedermann
Informationstechnik, Maschinenbau, Politik, Wirtschaft
regional
Forschungs- / Wissenstransfer, Wissenschaftspolitik
German


Die BBS haben nun eine „Fertigungsstraße“

Wer hin und wieder an seinen eigenen Schulunterricht zurückdenkt, der wird sich womöglich an die drögen Mathematikstunden erinnern, in denen Formeln und Gleichungen mit weißer Kreide an der Tafel notiert und danach abgeschrieben wurden. Bestimmt gab es auch das eine oder andere Diktat in der Deutschstunde oder einen Vokabeltest im Englischunterricht. Mittlerweile sind die Zeiten des einseitigen Frontalunterrichtes, als die spannendsten Schulstunden noch daraus bestanden, einen Dokumentarfilm zu gucken, glücklicherweise vorbei. So sollen Schülerinnen und Schüler laut aktueller Bildungspolitik nicht mehr nur theoretisch, sondern auch praktisch auf das Leben vorbereitet werden. Und auch technisch haben zahlreiche Schulen in der Vergangenheit fleißig nachgerüstet - allen voran die Berufsbildenden Schulen (BBS) in Walsrode.

Ein interaktives Smartboard statt der grünen Kreidetafel, zahlreiche PCs anstelle von Stiften und Papier und eine nachempfundene Produktionsanlage, die das klassische Schulbuch ersetzt - die sogenannte „Smart Factory" hat viel für die Schüler zu bieten, sogar einen eigenen 3D-Drucker.
Vor allem die angehenden Elektroniker für Automatisierungstechnik sowie für Betriebstechnik können von dem neuen Bildungsangebot der BBS profitieren. Die „Smart Factory“ ermögliche den Schülern nämlich, reale Produktionsprozesse nachzuvollziehen und diese bereits im Rahmen der Ausbildung kennenzulernen, erklärt Lehrer Helge Theissen im Rahmen der offiziellen Vorstellung des neuen Lern angebotes.

Vom ersten Auftrag bis hin zu der finalen Fertigstellung eines Produktes - all das ist in dem neuen Technikraum der Schule nun anschaulich möglich. An den Computern werden Bestellungen bearbeitet, die Kontakte mit den Kunden gepflegt und Transporte geplant. Auf zwei Produktionslinien können Waren hergestellt werden, die ganz automatisch mit Etiketten versehen, gewendet, gepresst oder mit einer Art Roboter von Linie 1 zu Linie 2 transportiert werden können - die Produktionssimulation gelingt aber nur, wenn die Abläufe im Vorfeld korrekt von den Schülern programmiert worden sind. „Solche Fertigungsstraßen gibt es heute in einer größeren Form in zahlreichen Unternehmen", weiß auch Schulleiter Andre Kwiatkowski.

Die „Smart Factory" biete den Schülerinnen und Schülern aber nicht nur einen genauen Einblick in modernste Produktionsabläufe. Tatsächlich gebe es zahlreiche didaktische Möglichkeiten, von denen die Ausbildung auf Dauer profitieren würde, so Helge Theissen. Der Unterricht in der technischen Werkstatt beinhalte unter anderem Analysen der Modelle oder das Erarbeiten der verschiedenen technischen Abläufe. „Sogar wenn es mal zu einer Fehlermeldung kommt, können die Schüler viel dabei lernen, wenn sie diese beheben", so Theissen weiter.

Insgesamt zwei Jahre Planung stecken in der „Smart Factory", die im November von der Firma Festo installiert und zunächst von den Lehrkräften der BBS ausprobiert worden ist. Doch nicht nur Zeit, sondern auch viel Geld waren für die Anlage notwendig, die insgesamt rund 200.000 Euro kostet. Der zusätzliche Umbau und die Modernisierung des Raumes, in dem sich die „Smart Factory" befindet, kostete weitere 100.000 Euro. Doch der Aufwand sei es allemal Wert gewesen, so Helge Theissen. Das Feedback der Schüler sei nämlich ausnahmslos positiv.

„Nur durch den Dialog mit der Politik konnten wir dieses Projekt finanzieren und schließlich auch verwirklichen", bedankte sich Schulleiter Andre Kwiatkowski. Allein die gute Zusammenarbeit ermögliche solch ein effektives Lernen für die Schülerinnen und Schüler. Und auch Landrat Manfred Ostermann betonte, dass der Landkreis froh sei, solch ein Projekt zu unterstützen. „Und wir machen hier nicht Schluss", erklärte Ostermann. Ziel sei es, den jungen Menschen durch die „Smart Factory" zu signalisieren, dass sich der Besuch der BBS Walsrode im Hinblick auf ihre berufliche Bildung lohne.


Video: How to Make a Graph in Microsoft Excel (December 2021).